Files
rasadyar_application/features/supervision/lib/data/utils/cluster_generator.dart
2025-04-09 17:05:38 +03:30

109 lines
3.5 KiB
Dart

import 'dart:math';
import 'package:flutter/foundation.dart';
import 'package:latlong2/latlong.dart';
class ClusterParams {
final List<LatLng> points;
final double clusterRadiusMeters;
ClusterParams({
required this.points,
required this.clusterRadiusMeters,
});
}
class Cluster {
final LatLng center;
final List<LatLng> members;
Cluster(this.center, this.members);
}
// Use a more efficient quadtree-based clustering algorithm
Future<List<Cluster>> clusterMarkersQuadtreeIsolate(ClusterParams params) async {
return compute(_clusterMarkersQuadtree, params);
}
List<Cluster> _clusterMarkersQuadtree(ClusterParams params) {
final points = params.points;
final radius = params.clusterRadiusMeters;
final distance = const Distance();
final List<Cluster> clusters = [];
// Skip clustering if we have a small number of points
if (points.length < 100) {
return points.map((p) => Cluster(p, [p])).toList();
}
// Find bounds
double minLat = points[0].latitude;
double maxLat = points[0].latitude;
double minLng = points[0].longitude;
double maxLng = points[0].longitude;
for (final point in points) {
minLat = min(minLat, point.latitude);
maxLat = max(maxLat, point.latitude);
minLng = min(minLng, point.longitude);
maxLng = max(maxLng, point.longitude);
}
// Build spatial grid for faster lookups (simple spatial index)
// Convert geographic distance to approximate degrees
final double radiusDegLat = radius / 111000; // ~111km per degree latitude
final double radiusDegLng = radius / (111000 * cos(minLat * pi / 180)); // Adjust for longitude
final int gridLatSize = ((maxLat - minLat) / radiusDegLat).ceil();
final int gridLngSize = ((maxLng - minLng) / radiusDegLng).ceil();
// Create spatial grid
final List<List<List<LatLng>>> grid = List.generate(
gridLatSize + 1,
(_) => List.generate(gridLngSize + 1, (_) => <LatLng>[])
);
// Add points to grid cells
for (final point in points) {
final int latIdx = ((point.latitude - minLat) / radiusDegLat).floor();
final int lngIdx = ((point.longitude - minLng) / radiusDegLng).floor();
grid[latIdx][lngIdx].add(point);
}
// Process grid cells in batches
final Set<LatLng> processed = {};
for (int latIdx = 0; latIdx < gridLatSize; latIdx++) {
for (int lngIdx = 0; lngIdx < gridLngSize; lngIdx++) {
final cellPoints = grid[latIdx][lngIdx];
for (final point in cellPoints) {
if (processed.contains(point)) continue;
// Find nearby points
final List<LatLng> neighbors = [];
neighbors.add(point);
processed.add(point);
// Check current and adjacent cells for neighbors
for (int adjLat = max(0, latIdx - 1); adjLat <= min(gridLatSize - 1, latIdx + 1); adjLat++) {
for (int adjLng = max(0, lngIdx - 1); adjLng <= min(gridLngSize - 1, lngIdx + 1); adjLng++) {
for (final neighbor in grid[adjLat][adjLng]) {
if (!processed.contains(neighbor) && distance(point, neighbor) <= radius) {
neighbors.add(neighbor);
processed.add(neighbor);
}
}
}
}
// Calculate cluster center
if (neighbors.isNotEmpty) {
final avgLat = neighbors.map((p) => p.latitude).reduce((a, b) => a + b) / neighbors.length;
final avgLng = neighbors.map((p) => p.longitude).reduce((a, b) => a + b) / neighbors.length;
clusters.add(Cluster(LatLng(avgLat, avgLng), neighbors));
}
}
}
}
return clusters;
}